Avoiding unstable volumetric titrations is a breeze if you follow these 10 best practices. You'll be able to start and end with a dry cell with ease and achieve accurate results.
To choose the proper titrant, you will need an idea of how much water could be in your sample. Composite 1 through 5 are different strengths of titrant, with the number indicating the number of milliliters of titrant needed to neutralize each milligram of water in the sample. Use the table below to help determine which strength is ideal.
Sample Size | |
Titrant Strengths | |
1 mg of H2O / mL of titrant (only 1 component) | For samples with less than 200 ppm H2O |
2 mg of H2O / mL of titrant | For samples with less than 1,000 ppm H2O |
5 mg of H2O / mL of titrant | For samples with 1,000 ppm to 100% H2O |
Just like with potentiometric titrations, it is important to verify what your titrant strength is. This will help you to remove a potential margin of error. Always use a certified water standard provided by a chemical supplier to verify the concentration of your Karl Fischer titrant. Karl Fischer titrants typically have a certified value of ±10% of the nominal value and should be standardized every time a new bottle is open and every 2-4 weeks thereafter, depending on accuracy requirements. Once a bottle of titrant is opened, and as its used, the air in the headspace of the bottle will react with the titrant. This causes the titrant strength to vary. Repeat the standardization procedure at least 3 times and take the average result to input into your KF sample method. You can enter the actual strength of the titrant in the titrant database found in the general options on your titrator.
Knowing the composition of your sample can help you avoid any potential side reactions. Side reactions can cause falsely high, or falsely low, results. Common side reactions occur in samples with aldehydes and ketones, oxidizing agents, and samples with pH outside of the ideal range (4-7 pH). You can take pre-emptive steps during sample preparation to avoid issues. Examples include using reagents especially designed for minimizing side reactions with ketones and aldehydes or using Karl Fischer grade buffering agents to ensure you achieve and maintain a proper pH.
When calculating your sample size, you must take your titrant strength, your expected water concentration, and burette volume into account. If you know all of those variables, calculating your sample size is quick and easy. Simply use the calculation below to determine your ideal sample size. Just keep in mind, that your sample size is in grams, even if it is a liquid.
Proper sample preparation can help negate issues with regular and complex samples. Samples that have extremely high water content, are insoluble in the solvent, release water slowly, or have inhomogeneous water distribution, or interferences, special sample preparation may be needed. An external extraction can be used to pull moisture out of a sample that would usually have issues dissolving in a solvent. An external dissolution can be used to pre-dissolve your sample in a solvent. A homogenizer or shaker device can be used to mix your sample during this sample preparation. These methods will create a liquid sample that can be easily added to the cell via a syringe.
How you introduce your sample into the titration cell can greatly influence your results as excess moisture could be introduced. To avoid extraneous moisture, follow these steps when introducing a sample via syringe.
Always remember that any septum is only good for 50 uses, so tracking this and replacing the septum is a necessary maintenance procedure. For compatible solid samples that will dissolve completely in the cell, you can remove the septum cap and pour the sample directly into the sample cell. It is recommended to use a tool such as our HI900950 chemical spoon to avoid the sample sticking to your implement.
Replacing tubing, O-rings, syringes, and desiccant are all important maintenance procedures that can be done by a user or by Hanna staff with the purchase of a service contract or onsite service. We recommend an annual system assessment and preventative maintenance performed by Hanna personnel which is included with our annual service contract HI903933-SC.
Wearable Part Maintenance | |
Part | When to Replace |
Syring and tubing | 12 months |
O-rings | 6 months |
Septa | Every 50 injections |
Factory Calibration | Every 2 years |
Keeping your Karl Fischer instrumentation clean will help you to maintain a closed system without extra moisture creeping in. To clean the sensing electrode and cell, soak the bottom electrode and the cell in concentrated nitric acid solution (~70%) for at least 1 hour. After the hour is up, rinse the electrode with tap water and then deionized water for a minimum of 15 minutes. Finally, rinse the sensing electrode and cell with Karl Fischer grade methanol. Alternatively, for the cell only, a drying oven can be used. For long-term storage, the electrode and cell can be stored dry. Ensuring maintenance is done correctly and often will keep your Karl Fischer up and running reliably.
NOTE: Do not submerge the top or cable of the electrode in any liquid.
For more information regarding how Hanna Instruments can help you with your titration needs, contact us, at sales@hannainst.com or 1-800-426-6287.